High School Science Virtual Learning

Chemistry

Stoichiometry Continued April 13, 2020

High School Chemistry
Lesson: 4/13/20

Objective/Learning Target:

Students are able to convert between moles of products and reactants.

Let's Get Started:

1. If 23.4 glopsnicks $=78.0$ glippers \& 35.6 flipplebobs $=65.4$ glippers then how many flipplebobs are in 34 glopsnicks?
2. Complete and balance the following reaction:

Iron reacts with sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to form iron(III) sulfate and hydrogen gas.

Let’s Get Started: Answer Key

1. Question 1-Answer

34 glopshicks $\times \frac{78.0 \text { glippers }}{23.4 \text { glopsnicks }} \times \frac{35.6 \text { flipplebobs }}{65.4 \text { glippers }}=62$ flipplebobs
2. Question 2 - Answer
$2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{SO}_{4}-->\quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$

Lesson Activity:

Directions:

1. Answer the following questions on the handout, as you watch the following video.

Links:

- Video: Tyler DeWitt - Mole Ratio Problems
- Handout: Tyler DeWitt Stoichiometry Video Worksheet

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

1. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?
2. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are need to produce 55.7 moles of H_{2} ?
3. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how many moles of O_{2} must have been made?

Once you have completed the practice questions check with the answer key.

1. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?

$$
\begin{array}{l|l|}
1.26 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{~mol} \mathrm{O}_{2}^{2} \\
\hline & 2 \mathrm{~mol} \mathrm{H} \mathrm{O} \mathrm{O}
\end{array}=. .630 \mathrm{~mol} \mathrm{O}
$$

2. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are need to produce 55.7 moles of H_{2} ?

$55.7 \mathrm{~mol} \mathrm{H}_{2}$	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
	$2 \mathrm{~mol} \mathrm{H}_{2}$

3. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how many moles of O_{2} must have been made?

$3.40 \mathrm{~mol} \mathrm{H}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$
	$2 \mathrm{~mol} \mathrm{H}_{2}$

More Practice:

Follow the links below to do more practice.

1. Mole to Mole Calculations (Please only complete page
1)
2. Mole to Mole Stoichiometry

Additional Practice:
Click on the link below to watch more how to solve more practice problems. Suggestion - copy each problem, then solve before the presenter finished.

- Organic Chemistry Tutor - Stoichiometry

